DuPont[™] Kapton[®] FPC

POLYIMIDE FILM

Technical Data Sheet

DuPont[™] Kapton[®] FPC polyimide film is treated on both sides and has the same excellent balance of physical, chemical and electrical properties over a wide temperature range offered by general purpose Kapton[®] HN. Kapton[®] FPC offers superior dimensional stability and adhesion, and is specifically designed for flex circuit manufacturers. Adhesion data for FPC can be referenced in the adhesion to Kapton[®] technical bulletin.

In applications where superior adhesion and low shrinkage are important, Kapton® FPC is the polyimide film of choice.

Applications

- Flexible printed circuits
- Automotive
- Computers
- Consumer products
- Telecommunications equipment
- Industrial instrumentation and controls
- Military applications
- Aerospace
- Electronic parts
- PCB stencils
- Screen printing
- Insulation tubing

Product Specifications

Kapton[®] FPC is manufactured, slit and packaged according to the product specifications listed in H-38487, Bulletin FC-97-6.

Certification

Kapton[®] FPC meets IPC 4202/1 requirements.

Table 1
Typical Properties of Kapton [®] FPC at 23°C (73°F)

Property	Unit	1 mil 25µm	2 mil 50µm	3 mil 75µm	5 mil 125µm	Test Method
Physical						
Tensile Strength	kpsi (MPa)	34 (234)	34 (234)	34 (234)	34 (234)	ASTM D-882-91
Elongation	%	80	82	82	82	ASTM D-882-91
Tensile Modulus	kpsi (GPa)	400 (2.8)	400 (2.8)	400 (2.8)	400 (2.8)	ASTM D-882-91
Adhesion	pli (N/mm)	10 (1.8)	10 (1.8)	10 (1.8)	10 (1.8)	IPC-TM-650 Method 2.4.9*
Density	g/cc	1.42	1.42	1.42	1.42	ASTM D-1505-90
MIT Folding Endurance	cycles	285,000	55,000	6,000	3,000	ASTM D-2176-89
Tear Strength-propagating (Elmendorf), N		0.07	0.21	0.38	0.58	ASTM D-1922-89
Tear Strength, initial (Graves), N		7.2	16.3	26.3	46.9	ASTM D-1004-90
Thermal						
Flammability		94V0	94V0	94V0	94V0	UL-94
Dimensional Stability (30 min at 150°C)	%	0.03	0.03	0.03	0.03	IPC-TM-650 Method 2.2.4; Method A
Limiting Oxygen Index	%	37	43	46	45	ASTM D-2863-87
Electrical						
Dielectric Strength	kV/mil (kV/mm)	7.7 (303)	6.1 (240)	5.2 (205)	3.9 (154)	ASTM D-149-91
Dielectric Constant	1kHz	3.4	3.4	3.5	3.5	ASTM D-150-92
Dissipation Factor at 1 kHz		0.0018	0.0020	0.0020	0.0026	ASTM D-150-92

*Acrylic adhesive to 1 oz. copper

Physical Properties of Kapton [®] FPC Film			
	Typical		
Physical Property	23°C (73°F)	200°C (392°F)	Test Method
Yield Point at 3%, MPa (psi)	69 (10,000)	41 (6000)	ASTM D-882-91
Stress to produce 5% elonga- tion, MPa (psi)	90 (13,000)	61 (9000)	ASTM D-882-91
Impact Strength, N•cm•(ft lb)	78 (0.58)		DuPont Pneumatic Impact Test
Coefficient of Friction, kinetic (film-to-film)	0.48		ASTM D-1894-90
Coefficient of Friction, static (film-to-film)	0.63		ASTM D-1894-90
Refractive Index (sodium D line)	1.70		ASTM D-542-90
Poisson's Ratio	0.34		Avg. three samples Elongated at 5%, 7%, 10%
Low Temperature Flex Life	pass		IPC-TM 650, Method 2.6.18

Table 2Physical Properties of Kapton® FPC Film

Table 3Thermal Properties of Kapton® FPC Film

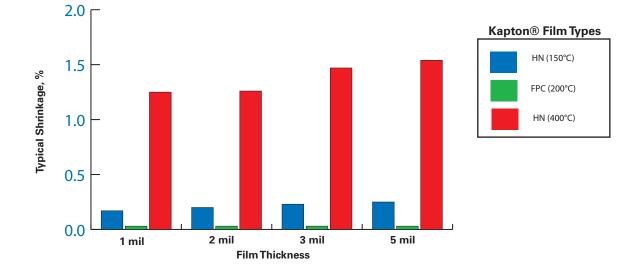
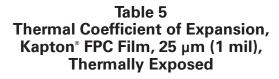

Thermal Property	Typical Value	Test Condition	Test Method
Melting Point	None	None	ASTM E-794-85 (1989)
Thermal Coefficient of Linear Expansion	20 ppm/°C (11 ppm/°F)	-14 to 38°C (7 to 100°F)	ASTM D-696-91
Coefficient of Thermal Conductivity,	0.12	296 K	ASTM F-433-77 (1987)
W/m-K cal cm∙sec∙°C	2.87 x 10 ⁴	23°C	
Specific Heat, J/g K (cal/g °C)	1.09 (0.261)		Differential calorimetry
Heat Sealability	not heat sealable		
Solder Float	pass		IPC-TM-650, method 2.4.13A
Smoke Generation	D _m =<1	NBS smoke chamber	NFPA-258
Glass Transition Temperature (T _g)	A second order transition occurs in Kapton® between 360°C(680°F) and 410°C(770°F) and is assumed to be the glass transition temperature. Different measurement techniques produce different results within the above temperature range.		

Table 4Electrical Properties of Kapton° FPC Film at 23°C (73°F)


Property Film Gage	Typical Value	Test Condition	Test Method
Dielectric Strength 25 μm (1 mil) 50 μm (2 mil) 75 μm (3 mil) 125 μm (5 mil)	V/m kV/mm (V/mil) 303 (7700) 240 (6100) 205 (5200) 154 (3900)	60 Hz 1/4 in electrodes 500 v/sec rise	ASTM D-149-91
Dielectric Constant 25 μm (1 mil) 50 μm (2 mil) 75 μm (3 mil) 125 μm (5 mil)	3.4 3.4 3.5 3.5	1 kHz	ASTM D-150-92
Dissipation Factor 25 μm (1 mil) 50 μm (2 mil) 75 μm (3 mil) 125 μm (5 mil)	0.0018 0.0020 0.0020 0.0026	1 kHz	ASTM D-150-92
<u>Volume Resistivity</u> 25 μm (1 mil) 50 μm (2 mil) 75 μm (3 mil) 125 μm (5 mil)	$\begin{array}{c} \Omega^{\bullet} \text{cm}_{^{17}} \\ 1.5 \times 10_{^{17}} \\ 1.5 \times 10_{^{17}} \\ 1.4 \times 10_{^{17}} \\ 1.0 \times 10_{^{17}} \end{array}$		ASTM D-257-91

Dimensional Stability

The dimensional stability of Kapton[®] polyimide film depends on two factors--the normal coefficient of thermal expansion and the residual stresses placed in the film during manufacture. The latter causes Kapton[®] to shrink on its first exposure to elevated temperatures as indicated in the bar graph in **Figure 1**. Once the film has been exposed, the normal values for the thermal coefficient of linear expansion as shown in **Table 5** can be expected.

Temperature Range, °C, (°F)	ppm/°C
30-100 (86-212)	17
100-200 (212-392)	32
200-300 (392-572)	40
300-400 (572-752)	44
30-400 (86-752)	34

For more information on DuPont[™] Kapton[®] or other High Performance Materials, please contact your local representative, or visit our website for additional regional contacts:

<u>Americas</u>

DuPont High Performance Materials U.S. Rt. 23 & DuPont Road Circleville, OH 43113 Tel: 800-967-5607

Europe

DuPont de Nemours (Luxembourg) S.A.R.L. Rue General Patton L-2984 Luxembourg Tel: 352-3666-5935 <u>Asia</u> DuPont Taiwan No. 45, Hsing-Pont Road Taoyuan, Taiwan, R.O.C. Tel: 886-3-3773668

Japan DuPont-Toray Co., Ltd. 5-6 Nihonbashi Honcho 1-chome Chuo-ku, Tokyo 103-0023 Japan Tel: 81-3-3245-5061

kapton.dupont.com

Copyright ©2006 DuPont or its affiliates. All rights reserved. The DuPont Oval, DuPont™, The miracles of science™ and Kapton® are registered trademarks or trademarks of E.I. du Pont de Nemours and Company or its affiliates. NO PART OF THIS MATERIAL MAY BE REPRODUCED, STORED IN A RETRIEVAL SYSTEM OR TRANSMITTED IN ANY FORM OR BY ANY MEANS ELECTRONIC, MECHANICAL, PHOTOCOPYING, RECORDING OR OTHERWISE WITHOUT THE PRIOR WRITTEN PERMISSION OF DUPONT.

Caution: Do not use in medical applications involving permanent implantation in the human body, or contact with internal body fluids or tissues. For other medical applications, see "DuPont Medical Caution Statement," H-50102.

This information is based on data believed to be reliable, but DuPont makes no warranties, express or implied, as to its accuracy and assumes no liability arising out of its use. The data listed herein falls within the normal range of product properties but should not be used to establish specification limits or used alone as the basis of design. Because DuPont cannot anticipate or control the many different conditions under which this information and/or product may be used, it does not guarantee the usefulness of the information or the suitability of its products in any application. Users should conduct their own tests to determine the appropriateness of the product for their particular purposes.

K-15361 03/06