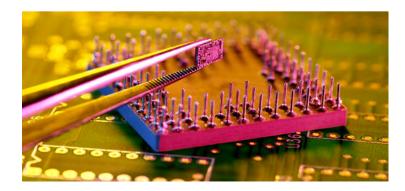


Quadrant Engineering Plastics Products

Semiconductor Solutions



You inspire... we materialize ®

Back End Test

The Changing Environment...

Driven by market requirements, the BiTS industry is pushing material science to the brink of polymeric capability

x higher I/O countx reduction in pitch

The traditional remedy for increasing the stiffness & stability of a polymer works against the requirements for a more machine-able polymer

x to increase stiffness you add fillers to the material

x filled material means decreased machine-ability
x especially in increasing hole & decreasing pitch sizes

How do we evaluate & compare materials for test applications

Miniaturization of Test Sockets

Year	Pitch	Thru Hole	Wall Size	I/O Count	Materials
1980- 98	2.54mm- 1.27mm	1mm75mm	.75mm	200	Ultem PEEK
1998-02	1mm6mm	.4mm65mm	.2mm35mm	200-1000	Ultem PEEK Torlon Polyimide
2002-09	.6mm4mm	.3mm4mm	.1mm2mm	Up to 2500	PEEK Torlon Polyimide
2009-12	.4mm25mm	.2mm3mm	.05mm01mm	??????	??????

Statement: Since we are focused on the increasing I/O count and reduction in pitch size we conclude that the machine-ability of the polymer & the stability of the polymer are key components to achieving next generation socket designs

Broad Definitions

- Machine-ability the ability to successfully machine a given hole pattern
- Polymeric Stability The ability of the polymer to maintain shape during the machining process and throughout the useful life of the socket

Polymeric Stability

*Polymeric stability in Test Socket applications relates specifically to the polymer substrates ability to withstand minimal dimensional change during the machining phase and testing phase

- The polymers ability to withstand dimensional change is characterized by two factors:
 - Stiffness of the polymer
 Expansion of the polymer over useful temperature range

Two accepted methods for measuring stiffness & expansion

- Flexural Modulus @ 73°F (D790) a measure of the ability of the polymer to withstand bending under a given load
- CLTE (-40°F 400°F, E-831) measure of the dimensional change over a wide temperature range

Measuring Polymeric Stability

Flexural Modulus @ 73°F 100,000 Formula: CLTE @ (-40°F to 300°F) 10⁻⁵

Higher numerator / higher stiffness - desired
 Lower denominator / less expansion - desired
 thus... higher overall polymeric stability factor desired

Formula applied to Semitron® MDS-100

Sample	1,420,000	100,000	_	12.91
Calculation:	1.1 X 10 ⁻⁵	1 ¥ 10 ⁻⁵		Polymeric Stability Factor

Comparison of Common Test Polymers for Stability using the Formula

Resin	CLTE (E-831)	Flex Modulus	Polymeric
	(-40 - 300F) X10-5	D-790	Stability Factor
Polyimide	3.05	450,000	1.48
PEEK	2.60	500,000	1.92
Ultem 1000 (PEI)	2.60	600,000	231
Ceramic Filled PEEK	2.00	650,000	3.25
30% GF PAI	2.60	900,000	3.46
Unfilled PA	1.70	600,000	3.53
MDS-100	1.10	1,420,000	1291

Polymeric Stability Factor: higher value = more stable

Machine-ability

For the purpose of Back End Test applications, machine-ability is defined as the polymers capacity to successfully machine decreasing cross-sections defined by decreasing wall thickness between holes (larger holes, decreasing pitch, higher I/O count) and decreasing overall part thickness

Factors Affecting Machine-ability

- ***** Heat sensitivity at point of drill contact
- Ability of the polymer to resist movement & remain rigid during machining *ductility*
- The homogeneous nature of the polymer

Tg or Glass Transition (D3148) – the temperature at which a material softens

× Higher temp resistance means cleaner holes

* Tensile Elongation (D638) – a measure of the elastomeric properties of a material. For machining fine features, increased rigidity is desired

Fillers – fillers used to increase the physical properties of the polymer have an adverse affect on the machineability of small features

- **×** Fibers have greater negative impact
- ***** Particulate have less impact on performance

Formula:	Tg (°F)	Tensile Elongation (%)	=	Ability
				Factor

ApplyMachine0.25 for fiber fillersFiller Factor:AbilityXFactor0.85 for particulate fillers

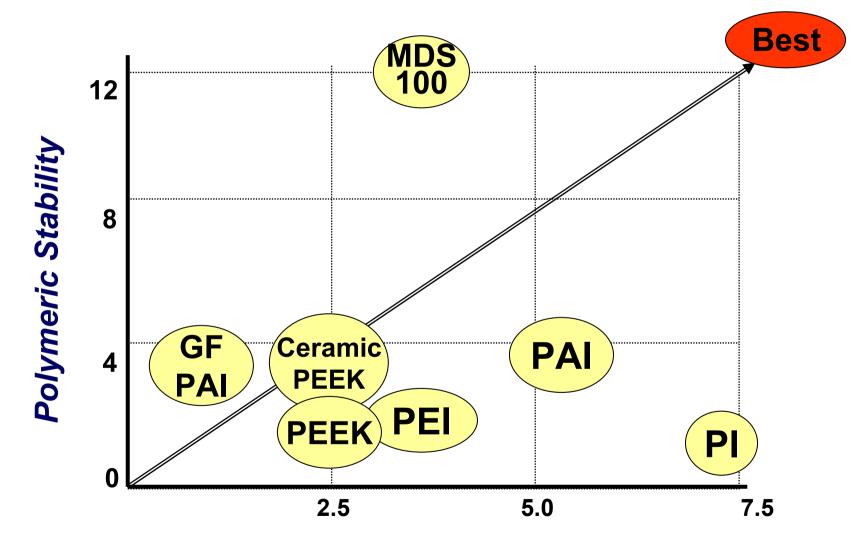
Formula applied to Torlon® 5530 PAI (30% GF)

Sample $(527^{\circ} - 3)(.25) = 131/100$

1.31

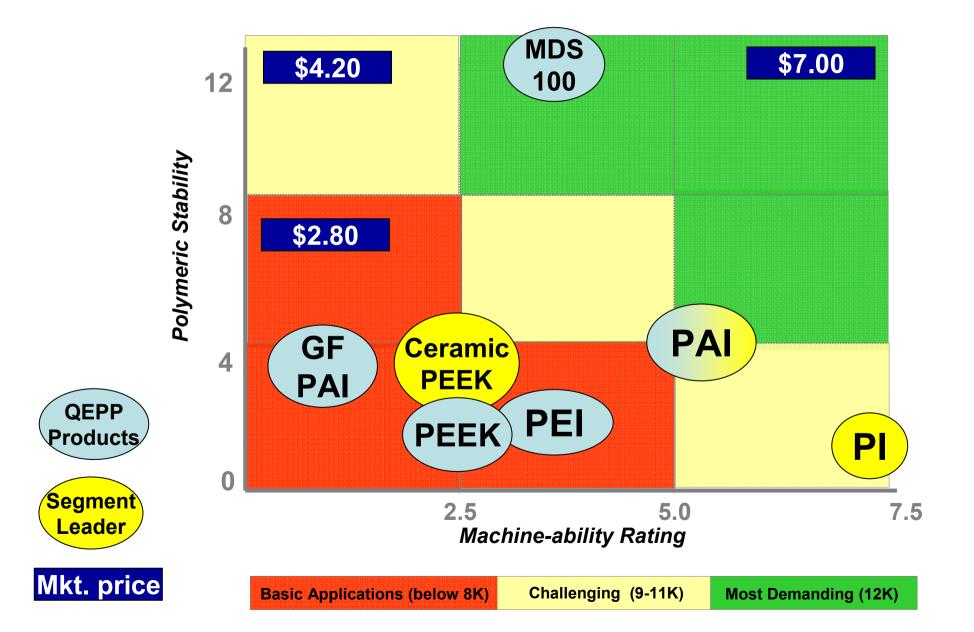
Machine Ability Factor

Comparison of Common Test Polymers for Machine-ability using the Formula


Polymer	Tg	Tensile	Filler	Machine-ability
		Elogation	Factor	Factor
Polyimide	752	7.5	0	7.4
Torlon 4203 (PAI)	527	10	0	5.2
Semitron MDS-100	350	1.5	0	3.5
Ultem 1000 (PEI)	410	80	0	3.3
GP PEEK	290	40	0	2.5
Ceramic PEEK	290	10	(0.90)	2.5
Torlon 5530 PAI (30%GF)	527	3	(0.25)	1.3

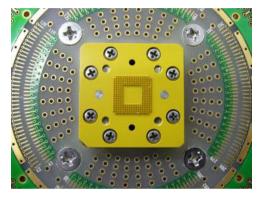
higher value = ease of machining 뢛 **Polymer Machine-ability Factor:**

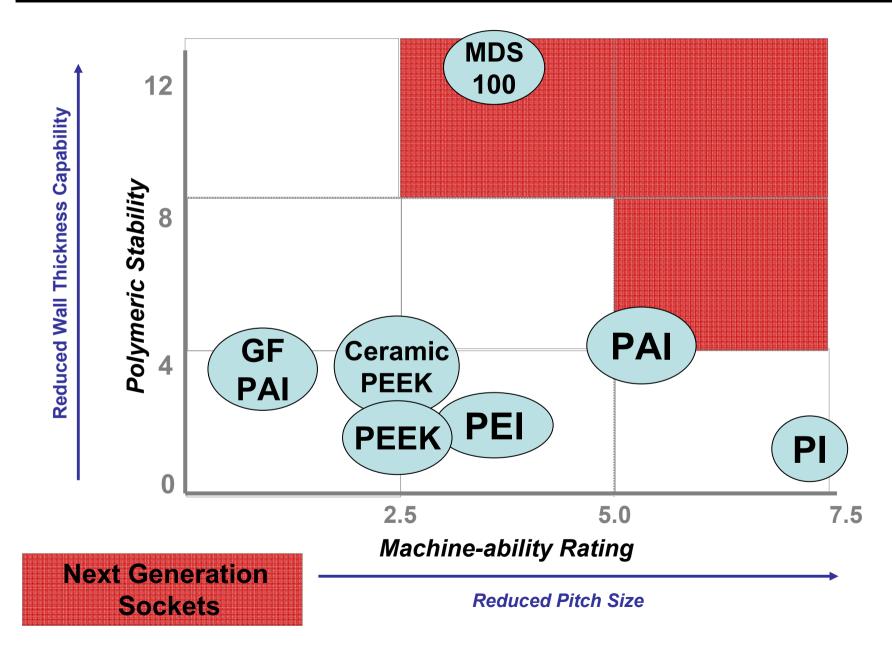
Comparison of Materials



Machine-ability Rating for Reduced Cross Section

Portfolio Discussion – GAP Analysis




Reduced Cross Section Sockets

Pitch	0.4mm – 0.25mm		
Thru Hole	0.2 mm – 0.3mm		
Wall Size	0.05mm – 0.1mm		
I / O count	+++		
Materials	???		

If you use the grid to select...

Summary ~ Next Generation Sockets

- Over the next few years, Industry changes will push traditional materials beyond their performance limits.
- Increased I/O counts. Smaller I/O pitches, thinner cross sections, increased loads per sq/in, smaller diameter holes, are issues we see today and will be at the forefront of issues leading into the next decade
- Using the Polymeric Stability along with the Machine-ability index will guide Engineers to right material from the start
- Semitron[®] MDS 100 will allow Engineers to work around design limitations associated with traditional materials.

	Pitch	Thru Hole	Wall Size	I/O Count	Materials
2009 - 2012	.4mm25mm	.2mm3mm	.05mm01mm	?????	Semitron [®] MDS 100